GraphMatch: Efficient Large-Scale Graph Construction for Structure from Motion

Qiaodong Cui¹, Victor Fragoso², Chris Sweeney³, Pradeep Sen¹ ¹University of California, Santa Barbara ²West Virginia University ³University of Washington

SfM background

Images

Reconstruction

Matching graph

Brute Force

navely et al 2008]

[Snavely et al. 2008]

Skeletal graphs

SfM Revisited

[Moulon et al. 2013]

Global fusion

Building Rome in a day

Vocabulary tree

[Nister et al. 2006]

Graph based Match

PatchMatch

UCSB 😿 W

GraphMatch

- Sampling step to identify new edges
- Propagation step to density matching graph
- Iterative "sample-and-propagate" scheme

GraphMatch

- Goal: Find most good matches as quickly as possible
- Good priors help predict potential matches
 - Sampling prior
 - Propagation prior

Sampling and Propagation priors

GraphMatch pipeline

- 1. Extract SIFT features and Fisher vector from images.
- 2. Compute fisher distance for all pairs of image.
- 3. While the algorithm has not converged do
 - 1. Sampling step
 - 2. Propagation step
- 4. Runs the reconstruction algorithm

Sampling Step

Sampling priors

- Vocabulary Tree
- VLAD vectors
- Fisher vectors

GraphMatch: Sampling

Voc. Tree scores are limited at predicting matching pairs.

GraphMatch: Sampling

VLAD vectors are better

GraphMatch: Sampling

Fisher vectors are best

Propagation Priors

Interleaving

Reconstruction of Roman Forum Scene

Matching graph for "Roman Forum" Scene Voc. Trees BRIAD [Agarwal et al. 2009] Our approach

UCSB

21

Iteration: 1

green: sampling edges red: propagation edges

Vienna Cathedral

Baseline: 134.3 hrs (est.) GraphMatch: 6.7 hrs

Piccadilly

Baseline: 163.6 hrs (est.) GraphMatch: 9.7 hrs

Trafalgar Square

Baseline: 835.4 hrs (est.) GraphMatch: 16.9 hrs

Cameras reconstructed for different datasets

Timing

DataSet	# recon cameras	Preprocess	Match	Recon	Total
VIENNA CATHEDRAL	794	3.37 min	367.58 min	44.28 min	450.60 min
PICADILLY	1863	3.61 min	512.53 min	98.34 min	655.38 min
Trafalgar	4057	7.93 min	1014.37 min	292.54 min	1380.68 min

Contributions

- Extension of PatchMatch to image matching.
 - "Sample-and-Propagate" Strategy
- Better priors (fisher vector)
- Efficiently finding more image matches
 - Achieving more reconstructed cameras
 - Maintaining equivalent speed-ups with Voc. tree

Limitations and Future Work

- Optimal parameter tuning.
- Image representation for sampling stage
 - PAIGE

Acknowledgements

- NSF grants IIS-1657179, IIS-1342931, and IIS-1321168
- Atieh Taheri for preliminary experiments.

Thank you

