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Networks of interconnected materials permeate throughout nature, biology, and technology due to
exceptional mechanical performance. Despite the importance of failure resistance in network design
and utility, no existing physical model effectively links strand mechanics and connectivity to predict
bulk fracture. Here, we reveal a universal scaling law that bridges these levels to predict the intrin-
sic fracture energy of diverse networks. Simulations and experiments demonstrate its remarkable
applicability to a breadth of strand constitutive behaviors, topologies, dimensionalities, and length
scales. We show that local strand rupture and nonlocal energy release contribute synergistically to
the measured intrinsic fracture energy in networks. These effects coordinate such that the intrinsic
fracture energy scales independent of the energy to rupture a strand; it instead depends on the
strand rupture force, breaking length, and connectivity. Our scaling law establishes a physical basis
for understanding network fracture and a framework for fabricating tough materials from networks
across multiple length scales.

Networks ubiquitously underpin the composition of
materials throughout nature and daily life, spanning
from nanoscale polymers and biological materials [1–
6] through microscale architected materials [7–11], syn-
thetic tissues [12, 13], and structural networks [14–16] to
macroscale fabrics and meshes [17]. The core of design-
ing and selecting network materials that endure routine
stresses in nature, technology, and daily life lies in cir-
cumventing mechanical fracture [18–21]. Intrinsic frac-
ture energy (Γ0) – the lowest energy required to propa-
gate a crack per unit of created surface area – is the key
property that characterizes a material’s fatigue resistance
[22]. Despite its importance, no quantitative model accu-
rately predicts the intrinsic fracture energy of networks
across multiple length scales from the mechanical behav-
ior and connectivity of its constituents.

Griffith proposed for brittle materials that the intrin-
sic fracture energy is the energy to break the atomic
bonds (Ubond) to propagate a new crack surface, i.e.,
Γ0/M = Ubond, where M is the areal density of bonds
[23]. Lake and Thomas extended this approach to poly-
mers and suggested that the intrinsic fracture energy of a
polymer network is the work to rupture a single layer of
constituent strands (Ustrand), i.e., Γ0/M = Ustrand [22].
Recent experiments reveal that the Lake-Thomas model
underestimates the measured intrinsic fracture energy of
polymer networks by ∼1-2 orders of magnitude [24–27]
due to nonlocal energy release [28] since strands far from
the crack tip relax and release energy when a crack prop-
agates. Various models [29, 30] have been proposed to
reconcile this discrepancy based on the assumption that

Γ0/M ∝ Ustrand, but none provides a physical depiction
describing the fracture of networks with varying strand
mechanics, network topologies, and length scales.

Here, we report a new scaling law for the intrinsic
fracture energy of networks through combined simulation
and experiments.

Γ0/M ∝ ffLf (1)

where ff is the strand breaking force and Lf is the
stretched strand length at the breaking point. We show
that this result applies across multiple length scales rang-
ing from 1 nm to 1 m for networks comprised of stretch-
able strands with varying single-strand force-length con-
stitutive behaviors ranging from linear to highly non-
linear relations. We similarly demonstrate the scaling
law is applicable to a breadth of 2D and 3D network ar-
chitectures, including triangular, square, hexagonal, di-
amond cubic, body-centered cubic, and cubic lattices.
Experiments ranging from nanoscale polymer networks
to macroscopic architected materials paired with simula-
tions of networks across length scales collectively validate
this scaling law.

ASSEMBLING DIVERSE NETWORKS

We connect the intrinsic fracture energy of networks to
the constitutive behavior of individual strands by directly
assembling and testing diverse networks. Mechanically
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FIG. 1. Universal scaling law for intrinsic fracture energy of networks. (a) Collections of identical strands are
assembled into networks to measure the intrinsic fracture energy Γ0. The crack tip of a loaded, notched specimen depicts how
strand lengths (L, colored by stored energy) increase during loading as the bridging strand approaches its failure length (Lf ).
(b) The nonlinearity parameter (K2/K1) describes the strain-stiffening constitutive behavior of strands by relating the moduli
of the first (K1) and second regimes (K2) of the force-length curve during loading to the failure force (ff ) and length (Lf ). (c)
Tuning the nonlinearity parameter (K2/K1 ∈ [1, 104]), stiffness crossover length (Lx), failure length (Lf ∈ [1 nm, 1 m]), and
rupture force (ff ∈ [1 nN, 1 N]) of single strands provides a breadth of candidates for network assembly and fracture testing.
(d) Intrinsic fracture energy (normalized by the areal strand density, M) scales linearly with ff and Lf of single strands across
all scales in a two-dimensional triangular lattice (loop size, nloop = 3), giving a prefactor α = 0.73. (e) The scaling law holds
for two-dimensional lattices with square (nloop = 4) and hexagonal (nloop = 6) lattices with prefactors α = 1.46 and 2.54,
respectively. Three-dimensional networks with (f) diamond cubic, (g) body-centered cubic, and (h) cubic unit cells follow the
scaling law with α = 1.07, 1.74, and 1.50, respectively.

identical strands with the same initial length L0, termi-
nal length Lf , and rupture force ff comprise each net-
work (see Fig. 1A). To describe strands with force-length
behaviors varying from linear to nonlinear, we adopt the
modified freely jointed chain (m-FJC) model, which re-
lates the force f and length L as

L

Lx
=

[
coth

(
f

K1

)
− K1

f

](
1 +

f

K2

)
(2)

where the two moduli K1 and K2 describe the stiffnesses
of the force-length curve before and after the crossover
length Lx. We then iteratively assemble strands – each
with identical constitutive behavior governed by the m-
FJC model – into networks for bulk mechanical test-
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ing. Prior works introduce lattice models [31] to sim-
ulate details of brittle fracture [14, 32] and mesoscale
or quasi-continuum network models to probe aspects of
elastomeric fracture [33–37]. Our numerical simulation
performs the pure shear fracture test on the aforemen-
tioned networks by first loading a notched sample to the
critical height hc where the crack propagates and then
loading an unnotched sample past hc while recording the
nominal stress as a function of the stretched height. The

intrinsic fracture energy Γ0 is computed as Γ0 =
∫ hc

h0
s dh

and is an inherent property of sufficiently large elastic
networks (see details in SI). To ensure the convergence
of Γ0, we simulate amply large networks with more than
1,000 vertical layers of strands. The goal of the numeri-
cal simulations is to connect the measured network-level
intrinsic fracture energy to the preset strand-level force-
length constitutive behavior. To achieve that, we sys-
tematically tune the strand failure lengths Lf from 1
nm to 1 m and rupture forces ff from 1 nN to 1 N;
similarly, we vary the ratio of K2/K1 as a nonlinearity
parameter to match a breadth of natural and synthetic
networks with behavior ranging from linear (K2/K1 ≈ 1)
to highly nonlinear (K2/K1 ≈ 104) (see Fig. 1C). We in-
tentionally limit our focus to stretchable networks where
the breaking stretch of each strand is greater than five
(i.e., Lf > 5L0) to minimize geometric artifacts (see SI
for a detailed explanation).

UNIVERSAL SCALING FOR NETWORK
INTRINSIC FRACTURE ENERGY

We find that all simulation results – across strand
lengths, failure forces, and nonlinearities – follow a uni-
versal scaling law: Γ0/M ∝ ffLf . In Fig. 1D, we
plot simulated intrinsic fracture energy per strand Γ0/M
against the product of failure force and length of the com-
posite strands ffLf and find that all data points collapse
along a single straight line: Γ0/M = αffLf , where α is a
fitting parameter depending on the specific lattice type.
While the universal scaling law holds for arbitrary strand
lengths, strand breaking forces, nonlinearity parameters,
and network orientations (see SI for details), the lattice
topology governs the prefactor α. The simulation yields
α = 0.73 for triangular lattices (Fig. 1D), α = 1.46 for
square lattices (top of Fig. 1E) and α = 2.54 for hexago-
nal lattices (bottom of Fig. 1E).

Additional simulations reveal the generality of this uni-
versal scaling law to three-dimensional networks. We as-
semble diamond, body-centered cubic (BCC), and cu-
bic lattices (see Fig. 1F-H) from strands with the same
breadth of behaviors. The universal scaling law accu-
rately predicts intrinsic fracture energy for each three-
dimensional topology. The diamond, BCC, and cubic
lattices give α = 1.07, α = 1.74, and α = 1.50, respec-
tively (see Fig. 1F-H).

FIG. 2. Physical explanation of the scaling for intrinsic
fracture energy of networks. (a) A case study simulates a
notched triangular network of strands with linear constitutive
behavior (K2/K1 ≈ 1) and loads from the undeformed state
(i) until bridging strand fracture (ii) then quasi-statically re-
duces artificial forces on the ends of the broken strand (iii)
until the network reaches equilibrium (iv). (b) The integra-
tion of the tracked force during strand loading (red) and non-
local energy release (blue) as a function of length between
strand ends matches the measured Γ0/M and scales with
ffLf . (c) A second case study repeats the procedure for
a network of strands with high nonlinearity (K2/K1 ≈ 104)
but the same ff and Lf . (d) While the single strand energy
(Ustrand, red) is much smaller than ffLf , the total integration
of the single strand and nonlocal contributions counterbalance
and scale with ffLf . (e) Simulation results depict extension
from triangular (nloop = 3) to square (nloop = 4) and hexag-
onal (nloop = 6) lattices for strands with high nonlinearity
(K2/K1 ≈ 104). The measured α parameter scales with loop
size here as α ∼ (nloop − 2). All results are numerically de-
rived from simulations.
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PHYSICAL EXPLANATION

We next seek to understand the origins of the scal-
ing law Γ0/M ∝ ffLf by analyzing the fracture pro-
cess of the bridging strand (i.e., the first breaking strand
along the crack plane) and examining its energetic con-
tributions. While loading a notched network to fracture
(Fig. 2A,C), the bridging strand at the crack tip stretches
from L0 to Lf and stores elastic energy (Ustrand) cor-
responding with the Lake-Thomas model (Fig. 2B,D).
However, instantaneously following bridging strand rup-
ture, the network remains unbalanced and must release
additional energy to reach a new equilibrium. In real
networks, this additional energy can be dissipated by
damping mechanisms such as viscous drag or friction.
To quantitatively measure this energetic contribution, we
apply a pair of artificial forces to hold the two ends of
the bridging strand after it ruptures and quasi-statically
reduce the magnitude of this force to zero, where the
network reaches its new equilibrium. We record the
value of the applied artificial forces as a function of the
distance between the two ends of the ruptured strand
(blue dashed line in Fig. 2B,D). This integration natu-
rally yields the energy released nonlocally by the network
continuum (blue region in Fig. 2B,D). Therefore, this nu-
merical simulation quantitatively describes the energetic
contributions of the single strand (red region) and net-
work continuum (blue region) to the measured intrinsic
fracture energy.

During post-fracture relaxation, the network exerts re-
action forces ∝ ff across a distance ∝ Lf on the broken
strand ends. For networks with linear strands (Fig. 2A),
the bridging strand and nonlocal contributions are on
the same order of magnitude (Fig. 2B, red region), so
Γ0/M ∝ Ustrand still provides a reasonable approxima-
tion. However, this does not hold when applied to net-
works with highly nonlinear strands (Fig. 2C); the single
strand contribution constitutes only a small fraction of
the total released energy (Fig. 2D). Instead, the released
energy from the network continuum dominates, which is
consistent with findings from our recent work [28]. Also,
in networks with increasingly nonlinear strands, more
strands are highly stretched, which deconcentrates stress
from the crack tip. Therefore, the total measured in-
trinsic fracture energy of the network always scales with
ffLf .

Next, we investigate how different types of networks af-
fect the fitting parameter α in the universal scaling law.
The key topological parameter describing a lattice dur-
ing fracture is its loop size: the number of strands within
the shortest closed path; our analysis includes triangular
(loop size, nloop = 3), square (nloop = 4), and hexago-
nal (nloop = 6) lattices. As shown in Fig. 2E, the loop
connected to the bridging strand in the notched sample
opens when the strand breaks at Lf , stretching and align-

FIG. 3. Experimental networks. (a) Nanoscale three-
dimensional poly(ethylene glycol) end-linked polymer net-
works, (b) macroscale three-dimensional architected diamond
lattices, and (c) macroscale two-dimensional architected tri-
angular networks displaying various single strand force-length
behaviors (ff , Lf , and K2/K1) are assembled to measure
intrinsic fracture energy via the pure shear fracture test on
notched (rightmost images) and unnotched samples to vali-
date the universal scaling law.

ing the strands within that loop. The broken strand ends
in triangular, square, and hexagonal lattices migrate in
this process from a distance of Lf to about 2Lf , 3Lf , and
5Lf , which gives relaxation lengths of (nloop−2)Lf . This
result establishes a topological interpretation for the pa-
rameter α as α ∝ (nloop−2), yielding a more quantitative
version of the universal scaling law:

Γ0/M ∝ (nloop − 2)ffLf (3)

While loop size becomes more complex in 3D networks
due to structural intricacies (i.e., strands with multiple
adjoining loops, etc.), effective loop sizes can be found
which match this result.
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FIG. 4. Intrinsic fracture energy in experimental networks. Experiments validate the universal scaling law in predicting
the measured intrinsic fracture energies of networks ranging from (a) nanoscale three-dimensional PEG polymer networks from
the literature to (b) macroscale two- and three-dimensional architected networks with various single-strand behaviors. The
Lake-Thomas model prediction deviates by ∼1-2 orders of magnitude. (c) Experimental results show the applicability of the
universal scaling law to a vast range of materials across scales, including polymer networks, biological networks (image courtesy
of Howard Vindin), architected materials [38], textiles [39], spider webs (image courtesy of Chen-Pan Liao), and nets (image
courtesy of Nikodem Nijaki).

EXPERIMENTAL VERIFICATION

We illustrate the versatility and consistency of this uni-
versal scaling through experimental validation across a
spectrum of networks, ranging from polymers composed
of strands at the nanometer level to architected mate-
rials composed of strands at the millimeter level. For
nanoscale polymer networks, we collect intrinsic fracture
energy measurements from across the literature for tetra-
poly(ethylene glycol) (PEG) hydrogels since they possess
relatively homogeneous networks [40] (see Fig. 3A). De-
gree of polymerization N between crosslinks tunes the
failure length of polymer strands (Lf ∼ N) [26] while
mechanophores embedded in the backbone tune the rup-
ture force of strands ff [24, 27]. For macroscale archi-
tected materials, we fabricate two- and three-dimensional
networks from folded and spring-shaped strands, re-
spectively, with various strain-stiffening K2/K1 behav-
ior by controlling the transition between compliant un-
folding (K1) and stiffer material stretching (K2) during

loading. Two-dimensional triangular lattices of repeat-
ing strands are laser cut (model: Epilog Laser Fusion
Maker 12) from polyester (0.001” thick) and polyacetal
(0.003”, 0.005” thick) films (McMaster-Carr) (Fig. 3B).
Three-dimensional diamond lattices of repeating strands
are modeled in a commercial 3D modeling software
(SolidWorks, Dassault Systems) and 3D printed (Inkbit
Vista, Inkbit) using a thiol-ene polyurethane elastomer
(TEPU30A, Inkbit) [41] (Fig. 3C). Intrinsic fracture en-
ergy is calculated after loading an unnotched specimen
in pure shear to obtain the force-stretch behavior and ex-
tending notched specimens in pure shear to the critical
height hc where bridging strands reach Lf .

These experimental networks cover a vast spectrum of
single-strand nonlinearity parameters (K2/K1 from 20
to 1.8× 104), breaking forces (ff from 1.3 nN to 1.7 N),
and breaking lengths (Lf from 47.4 nm to 25.1 mm).
Across this range, the proposed universal scaling law
predicts the experimentally measured polymer (Fig. 4A)
and architected (Fig. 4B) network intrinsic fracture en-
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ergy, while the Lake-Thomas model prediction underes-
timates all measurements by orders of magnitude. The
PEG polymer network results match well with α be-
tween 1-3 and scale appropriately (Fig. 4A). The α value
of 0.73 from triangular lattice simulations shows strong
agreement with the experiments for two-dimensional ar-
chitected triangular networks; similarly, the value of
1.07 from diamond lattice simulations matches well with
experiments for three-dimensional architected diamond
networks (Fig. 4B). The Lake-Thomas model consistently
underestimates the experimental results, but the devia-
tion varies in extent from one to two orders of magnitude.
Overall, experimental agreement of nanoscale polymer
networks and macroscopic architected materials to the
scaling law synergistically promote its universal applica-
bility in predicting diverse network fracture (Fig. 4C).

DISCUSSION

Notably, for polymer networks, the scaling of the Lake-
Thomas model with respect to strand length coincides
with the universal scaling law presented here. The Lake-
Thomas model suggests that Γ0/M ∼ Ustrand ∼ N ,
where N is the number of bonds within a polymer be-
tween junctions. Our result Γ0/M ∝ ffLf leads to the
same scaling for polymer networks since Lf ∼ N . There-
fore, both the Lake-Thomas model and the universal scal-
ing law predict that Γ0/M ∝ N . The key distinction
highlighted here is that the measured intrinsic fracture
energy is on the order of ffLf and can be much larger
than Ustrand. This observation reconciles results from
the literature which claim that the Lake-Thomas model
can effectively match measured trends while deviating in
magnitude [42].

The findings shared in this work parallel a separate
phenomenon studied in linear elastic fracture mechanics
based on Griffith theory called lattice trapping [43]. Lat-
tice models implementing atomistic force laws to approx-
imate fracture of atomically bonded materials expose a
mismatch in the measured critical energy release rate for
crack propagation and the surface energy dissipated by
breaking bonds [44]. This mismatch occurs because the
lattice structure exhibits an energy barrier which traps
the network in a local energy minimum even though the
fractured state is the global energy minimum. The nonlo-
cal contribution to intrinsic fracture energy parallels this
lattice trapping effect. For real crystalline materials, this
energy barrier typically remains small enough such that
the combination of thermal energy, dislocations, grain
structure, etc. cause the crack to overcome the barrier
to fracture within relevant timescales [45, 46]. For net-
works described here, this energy barrier can become ex-
tremely steep. We contend that the crack would likely
not overcome this barrier on relevant timescales due to
thermal fluctuations or structural defects. The true im-

pact of energy fluctuations on lattice trapping across all
networks and length scales remains an open question.
We propose that the full local and nonlocal effects must
be considered together to capture the intrinsic fracture
energy measured in networks studied here.

Networks manifest in nature due to exceptional resis-
tance to failure under harsh loading conditions. Design-
ing materials that mechanistically resist fracture requires
an understanding of the hierarchical connection between
strand mechanics, network connectivity, and macroscopic
properties. Here we reveal a simple universal scaling that
unifies the fracture of networks across many length scales,
strand mechanical nonlinearities, and lattice topologies.
Advancing a crack through a network requires local en-
ergy dissipation through breaking the bridging strand
and nonlocal energy release through opening the ad-
joining loop to rebalance. The physical process coun-
terintuitively produces a measured intrinsic fracture en-
ergy that scales with geometry through nloop and single
strand mechanics through ffLf instead of Ustrand. This
finding provides a foundational mechanism for interpret-
ing and designing networks as tough materials. For in-
stance, nanoscale polymer strands garner toughness in
natural, biological, and synthetic networks by synergis-
tically achieving high deformations and rupture forces.
Similarly, animals such as bees and spiders leverage con-
nectivity to resist honeycomb and web fracture. This
universal scaling law not only elucidates the beauty of
existing network structures but informs future design of
lattices in metamaterials, textiles, and beyond.
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METHODS

Mathematical model for numerical simulation

We model networks as systems of connected nonlinear
springs with constitutive force f and length L relations
characterized by the modified freely jointed chain model
in Eq. (2). This formula yields the constitutive law we
apply to each nonlinear spring in the simulation. To cap-
ture strand rupture, a breaking force ff and length Lf are
prescribed to the spring. We vary the range of ff from
1 nN to 1 N, Lf from 1 nm to 1 m, and K2/K1 from 1
to 3.0 × 104 to broadly describe networks across scales.
High nonlinearity parameters capture the extreme strain-
stiffening behavior measured using single molecule force
spectroscopy for common polymers such as poly(acrylic
acid) [47], poly(vinyl alcohol) [48], polyisoprene [49],
poly(acryl amide) and poly(N-isopropyl acrylamide) [50],
poly(dimethylacrylamide) and poly(diethylacrylamide)
[51], and poly(ethylene glycol), whose nonlinearity pa-
rameter reaches upwards of 1.8 × 104 [52]. The breaking
length Lf is notably selected in simulations to be at least
five times the initial length (i.e., Lf > 5L0) to limit geo-
metric artifacts.
We describe the lattice deformation of general 3D net-

works consisting of n nodes and e edges through their
coordinates (xi, yi, zi), where i = 1, ..., n. Two matrices
store the node coordinates and their respective connec-
tivities in MATLAB. The total system energy at each
loading step is expressed as the sum of the elastic energy
stored in each edge or spring as,

Utotal =
∑
i,j

∫ λij

1

f(λ′)dλ′, (4)

where λij is the stretch of the edge connecting node i
with j:

λij = r−1
0

√
(xi − xj)2 + (yi − yj)2 + (zi − zj)2. (5)

Minimizing Utotal numerically provides the coordinates
of each node (xi, yi, zi) as solved by equating

∂Utotal

∂xi
= 0,

∂Utotal

∂yi
= 0,

∂Utotal

∂zi
= 0, (6)

using Newton’s method in MATLAB. Additionally, a
broken edge between nodes i and j is detected when
λij > λf and removed by deleting the corresponding en-
tries of the connectivity matrices.
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Clamped boundary conditions are prescribed in the
simulation to the top and bottom surface to quasi-
statically stretch the sample from the initial height h0

to a final height h in the y-direction. The displacement
boundary condition is applied in the simulation on the
top and bottom nodes as,

yi = h, for i ∈ top nodes,

yi = y0i , for i ∈ bottom nodes,
(7)

where y0i denotes the initial y position of the i-th nodes.
The sample width w0 in the x-direction is set to twice

the height h0 in all simulations as w0 = 2h0. We fix the
x-displacement to enforce a pure shear loading condition
and limit boundary effects via

xi = x0
i , for i ∈ left nodes,

xi = x0
i , for i ∈ right nodes,

(8)

where x0
i denotes the initial x position of the i-th nodes.

Eqs. (6-8) form a boundary value problem that can be
solved numerically.

Quasi-static solver

The node coordinates (xi, yi, zi) fully describe the state
of the system, so all variables can be rewritten as vectors:

X = [x1, y1, z1, x2, y2, z2, ..., xn, yn, zn]
T . (9)

The 3n by 1 vector X contains all necessary information
to describe the lattice deformation. The nonlinear system
of equations described in Eqs. (6-8) is solved to obtain X
and can be written generally as,

F(X) = 0. (10)

Note that the equation above presents the same govern-
ing equations depicted in Eq. (6).

The solver implements Newton’s method to solve the
governing equation (Eq. (10)). The generalized Newton’s
method is to find a root of a functional F defined in a
Banach space. In this case, the formulation is

Xl+1 = Xl −
[
J(Xl)

]−1

F(Xl), (11)

where J(Xl) is the Jacobian matrix of the function F at
Xl, and l is the iteration number. Instead of computing
the inverse of this matrix, one can save time by solving
the following system of linear equations:

J(Xl) (Xl+1 −Xl) = −F(Xl). (12)

Starting with an initial guess X0, the next approximate
solution Xl is obtained iteratively. The method ends
when ∥Xl+1 − Xl∥ < δ, where δ is a defined accuracy
requirement.

The quasi-static simulation divides the loading process
into P steps to gradually stretch the network. It obtains
the system state X(p) by solving Eq. (10), where p =
1, .., P , at each step. To accelerate convergence of New-
ton’s method, the solution of the current step provides
the initial guess for the upcoming step.

Post-rupture artificial force decay simulation

We adapt the simulation protocol to explore the phys-
ical explanation for the universal scaling law by track-
ing and relaxing the nodes connecting the first bridg-
ing strand following rupture. A notched network is first
loaded to the critical height hc where the first bridging
strand breaks. The bulk boundary conditions are fixed
for the remainder of the simulation. Instead of break-
ing the bridging strand and equilibrating the system, the
strand is replaced by an approximately infinitely stiff
spring (Kspring ≫ K2 ≥ K1). At the initial step, the
simulation fixes the length of the stiff spring to match
the length of the broken strand (Lspring = Lf ), obtains

the next system state X(P+1) by solving Eq. (10), and
stores the pair of opposing artificial forces required to
preserve equilibrium on each node. For the remaining
steps, the algorithm incrementally lengthens the spring,
equilibrates the system state, and stores the new spring
force readout. The iterative procedure concludes once the
measured spring force reaches a small tolerance of zero
or the spring reaches a predetermined terminal length.

Coarse-graining simulation procedure

We simulate networks on the order of thousands of
layers to ensure convergence of samples with high non-
linearity parameters (see SI for details on convergence).
Networks are coarse-grained far from the crack tip for
computational efficiency (see SI for a case study on the
computational limits). The coarse-grained method re-
constructs large networks with drastically fewer degrees
of freedom (DOFs). Near fracture of the bridging strand,
the network is most inhomogeneous near the crack tip
but becomes more homogeneous with increasing distance.
Since strands far from the crack tip do not substantially
vary in their local neighborhoods, a coarse lattice can
equivalently describe their continuum-level mechanical
response. For instance, a 2D triangular network with
h0 = 100 layers and w0 = 200 layers can be reconstructed
with incremental levels of coarse lattices moving radially
outwards from the crack tip (see the SI figure on coarse-
graining). The relative stiffness of coarse-grained strands
is prescribed proportionally to length (represented by
line thicknesses in the SI figure on coarse-graining) to
ensure the coarse-grained neighborhoods maintain the
same bulk mechanical performance as the full network.
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In notched samples, levels incrementally coarsen with
increasing distance in the x- and y-directions from the
undeformed crack tip. A full two-dimensional network
possessing 23,057 nodes can therefore be coarse-grained
with this scheme to contain only 1,047 nodes (see SI fig-
ure on coarse-graining). Direct comparisons indicate that
the coarse-grained model accurately predicts the critical
stretch at which the first strand breaks (see SI for a de-
tailed comparison). While the coarse-grained model can-
not accurately capture the full fracture process, it yields
an accurate measure of hc in the pure shear fracture test.

The coarse-grained triangular networks used for all
simulations contain a size of h0 = 4,000 layers by w0 =
8,000 layers, with a total of 44,847 nodes and 89,694
DOFs (see SI figure on coarse-grained sample size). Note
that an equivalent full network requires about 40 million
nodes; the coarse-graining scheme decreases the required
number by 99.9%. Each iteration of Newton’s method –
which includes assembling the Jacobian matrix and solv-
ing Eq. (11) – typically costs a few seconds. The full
fracture simulation of a two-dimensional h0 = 4,000 layer
network typically takes under 20 minutes to complete on
a standard desktop with Intel Core i9- 12900K.

Fabrication of architected networks

Two-dimensional networks are fabricated by laser cut-
ting polyester (12” × 12” × 0.001”) and polyacetal (12”
× 12” × 0.003”, 0.005”) sheets (McMaster-Carr part
numbers: 7594T11 and 5742T11) with a laser cutter (Fu-
sion Maker 12, Epilog Laser). The triangular network
strand pattern is designed (CorelDRAW, Corel Corpo-
ration) with 28 vertical layers of repeating units with
60 strands per layer. Each strand has a “zigzag” struc-
ture that unfolds to provide an initial compliant bending
regime then deforms the material to provide a final stiff
stretching regime [53]. This large discrepancy between
stiffness enables high values and tunability of the non-
linearity parameter K2/K1 from the m-FJC model. The
distance between the laser head and the acetal film is
calibrated before cutting to ensure sharp focus. Cutting
parameters are selected to be 10% for laser power, 10%
for frequency, and 100% for speed. Four identical samples
in total are cut to perform each measurement of energy
release rate. For each sample, four 1/16” acrylic sheets
are cut and glued on either side of an uncut portion at the
top and bottom of the sample to act as a rigid boundary,
which is clamped onto the mechanical testing machine.

For three-dimensional networks, single spring-shaped
strands are designed and parameterized using commercial
3D modeling software (Solidworks, Dassault Systems).
Strands are assembled spatially into a diamond cubic
unit cell and joined at strand ends via spherical nodes.
Unit cells comprised of 16 strands are patterned into
a 16×16×8 array. The resulting lattice contains 2,048

unit cells and 32,768 single strands. Rectangular plates
are joined to the top and bottom faces of the network.
The assembled components are joined and resized such
that single strands are 5 mm in length, giving a bulk
height of 186 mm for the 16 unit cells. The resulting
network is saved as a sterolithography file, exported, and
3D printed on a vision controlled jetting system (Inkbit
Vista, Inkbit) using a thiol-ene polyurethane elastomer
(TEPU30A, Inkbit). For each sample, four acrylic sheets
and cut and glued to the top and bottom plates to form a
rigid boundary with a vertical protrusion to be clamped
onto the testing machine.

Experimental measurement of architected networks

Pure shear fracture tests are performed on two-
dimensional networks using a ZwickiLine materials test-
ing machine (2.5 kN load cell, Zwick/Roell). To measure
fracture energy Γ0, a uniaxial extension test is first per-
formed on a pristine sample at a constant loading rate
of 100 mm/min. Using the experimentally obtained uni-
axial response, we inversely identify the effective force-
length curve for each strand such that the simulation
results match experiments. To validate this approach,
five individual 0.005” polyacetal strands are laser cut
and tested uniaxially. The average force-length curve
measured experimentally matches the profile obtained by
the inverse method. The inverse method is then used for
0.003” polyacetal and 0.001” polyester two-dimensional
networks. For the remaining three samples, we introduce
an identical crack with length ∼ w0/2. Uniaxial tensile
tests are performed on the three notched samples at a
loading rate of 100 mm/min. Since the rupture of strands
is uncontrolled when a notched sample is loaded to the
fracture event, we preset the critical stretched height hc

and consider the bridging strands to “rupture” when the
whole network reaches that applied height. The energy
release rate of the pristine sample at hc is measured and
recorded to mark the intrinsic fracture energy Γ0 of the
network. The rupture length Lf of the bridging strand is
measured using calipers when the notched sample reaches
hc, and the rupture force ff is interpolated from the sin-
gle strand force-length curve.
Three-dimensional pure shear tests are performed us-

ing a single-axis Instron universal testing machine (500N
load cell, Instron 5566) at a constant loading rate of 1
mm/s. Prior to mechanical loading, rigid acrylic mounts
are glued to the rectangular plates printed on the top and
bottom faces of the sample. Mounts are then fixed via
mechanical grippers within the testing apparatus. The
fracture energy Γ0 is calculated by the same procedure
outlined for the 2D networks. Note that crack of width
w0/2 is cut through all layers in the thickness direction.
The rupture length Lf of the bridging strand is measured
based on snapshots of experimental recordings. At each
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loading state, we measure five bridging strands in the
thickness direction and take their average as the current
Lf . Note that due to gravity, the strands fall on each

other at the original height of 186 mm. The network is
not fully opened until it is been stretched to 350 mm. To
eliminate the effect of gravity, we set the measured force
to 0 N until the network is stretched to 350 mm.
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